Estudia
- Artes y humanidades
- Ciencias
- Ciencias de la salud
- Ciencias sociales y jurídicas
-
Ingeniería y arquitectura
- Doble Máster Universitario en Ingeniería Industrial e Ingeniería Energética
- Máster Erasmus Mundus en Ingeniería Mecatrónica
- Máster Universitario Erasmus Mundus en Tecnología y Gestión para la Economía Circular
- Máster Erasmus Mundus en Transporte Sostenible y Sistemas Eléctricos de Potencia
- Máster Universitario en Ciencia y Tecnología de Materiales
- Máster Universitario en Conversión de Energía Eléctrica y Sistemas de Potencia
- Máster Universitario en Conversión de Energía Eléctrica y Sistemas de Potencia (Plan antiguo)
- Máster Universitario en Dirección de Proyectos
- Máster Universitario en Geotecnología y Desarrollo de Proyectos SIG
- Máster Universitario en Ingeniería de Automatización e Informática Industrial
- Máster Universitario en Ingeniería de Caminos, Canales y Puertos
- Máster Universitario en Ingeniería de Minas
- Máster Universitario en Ingeniería de Telecomunicación
- Máster Universitario en Ingeniería Energética
- Máster Universitario en Ingeniería Industrial
- Máster Universitario en Ingeniería Informática
- Máster Universitario en Ingeniería Mecatrónica
- Máster Universitario en Ingeniería Química
- Máster Universitario en Ingeniería Web (nuevo-implantación en curso 2024-25)
- Máster Universitario en Ingeniería Web (En Extinción)
- Máster Universitario en Integridad y Durabilidad de Materiales, Componentes y Estructuras
- Máster Universitario en Náutica y Gestión del Transporte Marítimo
- Máster Universitario en Tecnologías Marinas y Mantenimiento
- Máster Universitario en Prevención de Riesgos Laborales
- Información, acceso y becas
Diseño Avanzado de Reactores
- Clases Expositivas (25 Hours)
- Prácticas de Aula/Semina (7 Hours)
- Tutorías Grupales (2 Hours)
Advanced Reactor Design is a compulsory course and corresponds to the first modulus, “Process and Product Engineering”. It is taught by Chemical Engineering professors from the Department of Chemical and Environmetal Engineering, complemented by external instructors.
The aim of this subject is to study in detail the design and operation of chemical reactors, specialy of heterogeneous reactors (both non-catalytic and catalytic), as well as other types of reactors such as enzimatic, biological, electrochemical, with separation or forced unsteady state reactors.
This course is taught in Spanish.
There are no spcific requirements for this course.
Is is advisable that the students have basic knowledge on Transport Phenomena, Thermodynamics (Thermochemistry, Phase Equilibrium, Chemical Equilibrium) and Chemical Kinetics, as well as basic knowledge on the design of homogeneous chemical
This course is taught in Spanish, so an adequate level of this lenguaje is necessary, although no specific requirements are specified.
GENERAL SKILLS
CG1 | Be able to apply the scientific method and the principles of engineering and economy to formulate and solve complex problems of processes, operations, systems and services where matter changes in composition, state, or energy content, characteristic of the chemical industry and other related sectors, such as pharmaceutical, biotechnological, material, energy, food, or environmental. |
CG2 | Be able to conceive, project and design processes, equipment and industrial facilities and services, in the field of chemical engineering and related industrial sectors, in terms of quality, safety, economy, and in an environmentally sustainable way. |
CG4 | Be able to do the appropriate research, undertake the design and manage the development of engineering solutions, in new or partially known environments, relating creativity, originality, innovation and technology transfer. |
CG5 | Be able to develop mathematical models and be competent in the use of computer methods for solving them, as a scientific and technological base for the design of new processes, systems, facilities and products, as well as to optimize the existing ones. |
CG6 | Be able to analyse the continuous development of product and processes, taking into consideration technical, health, safety and environmental aspects, as well as economic and quality reliance concerns. |
CG7 | Be able to integrate knowledge and take decisions under conditions of uncertainty, including the consideration of reflections based on ethical and social responsibilities. |
SPECIFIC SKILLS
CIPP1 | Have a knowledge and understanding of Mathematics, Physics, Chemistry, Biology and other Sciences necessary to support application of key engineering principles. |
CIPP2 | Be able to design and optimize products, processes, systems and services for the chemical industry on the basis of the different chemical engineering areas, comprising of processes and transport phenomena, separation operations, and chemical, nuclear, electrochemical and biochemical reaction engineering. |
CIPP3 | Be able to develop mathematical and computer models relevant to the chemical engineering discipline, and an appreciation of their limitations. Awareness of developing technologies related to chemical engineering. |
CIPP4 | Be able to solve problems, design processes and methodologies, and have the ability to apply and adapt them in unfamiliar situations. Be capable of generating an innovative design for processes, systems and products to fulfil new needs. |
LEARNING OUTCOMES
RADAR1 | Be able to design non-catalytic, solid-fluid and fluid-fluid, heterogeneous reactors. |
RADAR2 | Be able to design heterogeneous catalytic reactors, such as fixed and fluidized bed reactors. |
RADAR3 | Be able to design multiphase catalytic reactors (fluid-fluid-solid catalyst). |
1. Introduction to heterogeneous reactors. Catalytic and non-catalytic reactors. Mass transfer and kinetics in heterogeneous reactions. Types of heterogeneous reactors.
2. Non-catalytic solid-fluid reactors. Kinetics and reactor design.
3. Non-catalytic fluid-fluid reactors. Kinetics and reactor design.
4. Reactor with solid catalyst. General aspects, kinetics, reactor types and modelling.
5. Fixed bed catalytic reactors. Modelling, reactors in series an autothermic operation.
6. Moving and fluidized bed reactors. Modelling.
7. Catalyst deactivation. Design of catalytic reactors with catalyst deactivation.
8. Three phase reactions. Kinetics, reactor types and reactor design.
9. Enzimatic and biological reactors.
10. Other types of reactors: electrochemical, photochemical, with separation, forced unsteady state.
11. Operation and safety aspects in heterogeneous reactors.
Course methodology
Face to face teaching:
Lectures
Seminars/classroom practices
Group tutorials
Non conctact activities:
Autonomous work
Group work
In this course there are 22 h of lectures plus 7 h of seminars, 2 h of group tutorials an 3 h of evaluation.
The course guide is available for the students, who are provide in advance with the problems to be solved in class.
Lectures are devoted to theoretical of practical subjects explained by the instructor. The support material used is available for the students. Seminars and class room practices are devoted preferentially to solve practical problems with higher participation of the students.
This course could include other ectivities such as visits to companies or research centers, attendance to external seminars or conferences, etc. Those activities would be announced in advance.
Course evaluation:
The course grading will be calculated on a 0 to 10 basis according to the following percentages:
Seminars and Group tutorials: 20 %
Final exam: 80 %
Seminars and Group Tutorials: attendance is compulsory. If adequately justified, and 80 % attendance can be accepted.
Final exam: A written exam will take place at the end of the course. It will consist on 5 theoretical questions (50 % of the exam grade) and 2 problems (50 % of the exam grade). In order to pass the course it is necessary that the grade of the theoretical part is at least 15 % of the total exam grade, and that the grade of the problems part is at least 15 % of the total exam grade.
In order to pass the course it is necessary that the grade of the Seminars and Group Tutorials is at least 50 %.
Reference books:
- O. Levenspiel, "Ingeniería de las Reacciones Químicas", 3a.Ed., Limusa Wiley, México, 2004
- R.W. Missen, C.A. Mims, B.A. Saville, “Chemical Reaction Engineering and Kinetics”, J. Wiley, Nueva York, 1999
Suplementary books:
- O. Levenspiel, "El omnilibro de los reactores químicos", Reverté, Barcelona, 1986
- J.M. Santamaría y cols., “Ingeniería de reactores”, Síntesis, Madrid, 1999
- J. M. Smith, "Chemical Engineering Kinetics", 3a. Ed., McGraw-Hill, Singapur, 1981
- H. S. Fogler, "Elementos de Ingeniería de las Reacciones Químicas", 3a. Ed, Prentice-Hall, Méjico, 2001
- G. F. Froment, K. B. Bischoff, "Chemical Reactor Analysis and Design", 2a. Ed, J. Wiley, Nueva York, 1990
English edditions of most of these books are available.