

OPCIÓN A

1. (2,5 puntos)

La reacción de metano, CH₄(g), con cloro, Cl₂(g), en condiciones estándar, produce cloruro de hidrógeno, HCl(g), y cloroformo, CHCl₃(g). Calcule la variación de entalpía para la reacción descrita a partir de los siguientes datos:

 $\Delta H^{o}(formación)[CHCl_{3}(g)] = -103,1 \text{ kJ/mol}; \Delta H^{o}(formación)[HCl(g)] = -92,3 \text{ kJ/mol}; \Delta H^{o}(formación)[H_{2}O(l)] = -285,8 \text{ kJ/mol}; \Delta H^{o}(formación)[CO_{2}(g)] = -393,5 \text{ kJ/mol}; \Delta H^{o}(combustión)[CH_{4}(g)] = -890,3 \text{ kJ/mol} de metano.$

2. (2,5 puntos)

Un vinagre comercial contiene un 6.0 % en masa de ácido acético, CH₃COOH. Calcule la masa, en gramos, de ese vinagre que debe diluirse en agua para obtener 500 mL de una disolución con pH = 3.5. Considere que el ácido acético es el único ácido presente en el vinagre.

Datos. $K_a(CH_3COOH) = 1.8 \times 10^{-5}$. Masas atómicas: C: 12 u; H: 1 u; O: 16 u.

3. (1,0 punto)

Describa el procedimiento experimental a seguir en el laboratorio para determinar la concentración de peróxido de hidrógeno en un agua oxigenada mediante la valoración denominada permanganimetría.

4. (2,0 puntos)

- A. Escriba las configuraciones electrónicas de los elementos X (Z = 17) e Y (Z = 53). Indique el grupo y período de la tabla periódica a los que pertenece cada uno de los elementos. A partir de su posición en la tabla periódica, indique, de forma razonada, el elemento que presentará el valor más negativo de la afinidad electrónica. (1,0 punto)
- B. Para la molécula CCl₄, deduzca la estructura de Lewis. Nombre y dibuje la geometría molecular e indique los ángulos de enlace aproximados.

Datos. C(Z = 6); Cl(Z = 17)

(1,0 punto)

5. (2,0 puntos)

- A. La reacción de descomposición: $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ es un proceso endotérmico. Explique el efecto que sobre la concentración de $NH_3(g)$ en el equilibrio tendrá:
 - i. Elevar la temperatura de la reacción manteniendo el volumen constante. (0,5 puntos)
 - ii. La adición de NH₄HS(s) al sistema en equilibrio.

(0,5 puntos)

B. Nombre y escriba las fórmulas semidesarrolladas de los productos obtenidos en: i) la oxidación de 2-propanol; (0,5 puntos) ii) la deshidratación del etanol. (0,5 puntos)

OPCIÓN B

1. (2,5 puntos)

En un recipiente de 5 L, en el que previamente se ha realizado el vacío, se introducen 10,6 g de $Cl_2(g)$ y 375,0 g de $PCl_5(g)$. El conjunto se calienta a 200 °C, estableciéndose el equilibrio químico representado por la ecuación: $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$.

- i. Si en el equilibrio hay 30,0 g de PCl₃(g), calcule las presiones parciales de PCl₅(g), PCl₃(g) y Cl₂(g) en el equilibrio a 200 °C. (1,5 puntos)
- ii. Calcule los valores de K_P y K_C para el equilibrio a 200 °C. (1,0 punto)

Datos. R = 0.082 atm L K^{-1} mol⁻¹; Masas atómicas: P = 31 u, Cl = 35.45 u.

2. (2,5 puntos)

Se dispone del siguiente material: dos varillas de cobre, disolución 1 M de Cu⁺(ac), disolución 1 M de Cu²⁺(ac), puente salino, voltímetro y conexiones eléctricas.

- i. Escriba las semirreacciones de oxidación y de reducción, así como la reacción global que tiene lugar en la pila que se puede construir con el material disponible. Calcule el potencial estándar de la pila.
 (1,0 punto)
- ii. Dibuje un esquema de la pila, indicando el ánodo, el cátodo y el sentido en el que fluyen los electrones. (1,5 puntos)

Datos. $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}; E^{\circ}(Cu^{+}/Cu) = +0.52 \text{ V}.$

3. (1 punto)

En el laboratorio se desea determinar el calor de la reacción ácido-base del hidróxido de sodio con el ácido clorhídrico. Dibuje un esquema del dispositivo experimental e indique el material utilizado.

4. (2,0 puntos)

- A. Indique, justificando la respuesta, el número de electrones desapareados que presentan, en estado fundamental, los átomos de Mn (Z = 25) y Se (Z = 34). (1,0 punto)
- B. Los valores de los puntos normales de ebullición del HF y del HCl son 292,5 y 188,1 K, respectivamente. Explique la diferencia observada en estos valores de los puntos normales de ebullición. (1,0 punto)

5. (2,0 puntos)

- A. Dispone de una disolución reguladora de ácido acético, CH₃COOH, y acetato de sodio, NaCH₃COO. Escriba y justifique la ecuación química que muestre cómo reacciona la disolución reguladora preparada cuando: i) se le añade una pequeña cantidad de ácido fuerte (**0,5 puntos**); ii) se le añade una pequeña cantidad de base fuerte. (**0,5 puntos**)
- B. Escriba las fórmulas semidesarrolladas de los siguientes compuestos:

i) Dietilamina

ii) cis-2-penteno

iii) 2,2-dimetil-3-hexino

iv) Butanona

(1,0 punto)

Criterios específicos de corrección

OPCIÓN A

Se dará la puntuación máxima cuando el ejercicio esté convenientemente razonado, con evidente manejo de los conceptos químicos y la solución numérica sea la correcta y con las unidades correspondientes. En cada apartado se trata de comprobar si los estudiantes son capaces de:

1. (2,5 puntos)

Aplicar la ley de Hess para la determinación teórica de entalpías de reacción, utilizando las entalpías de formación.

2. (2,5 puntos)

Aplicar la teoría de Brönsted. Conocer y manejar los valores de las constantes de equilibrio. Realizar cálculos estequiométricos.

3. (1,0 punto)

Valoraciones redox. Tratamiento experimental.

4. (2,0 puntos)

- A. Aplicar los principios y reglas que permiten escribir estructuras electrónicas de átomos y justificar, a partir de dichas estructuras electrónicas, la ordenación de los elementos (**0,50 puntos**) y la variación periódica de la afinidad electrónica en los elementos de un mismo grupo de la tabla periódica. (**0,50 puntos**)
- B. Deducir la forma geométrica, indicando la forma y los ángulos de enlace de moléculas en las que el átomo central tenga hasta cuatro pares de electrones, aplicando estructuras de Lewis y la teoría de repulsiones de pares de electrones de la capa de valencia de los átomos. (1,0 punto)

5. (2,0 puntos)

- A. Predecir, cualitativamente, aplicando el principio de Le Chatelier, la forma en la que evoluciona un sistema en equilibrio cuando se interacciona con él. (1,0 punto)
- B. Reconocer diferentes tipos de reacciones orgánicas. Formular y nombrar hidrocarburos insaturados y compuestos orgánicos oxigenados. (1,0 punto)

Criterios específicos de corrección

OPCIÓN B

Se dará la puntuación máxima cuando el ejercicio esté convenientemente razonado, con evidente manejo de los conceptos químicos y la solución numérica sea la correcta y con las unidades correspondientes. En cada apartado se trata de comprobar si los estudiantes son capaces de:

1. (2,5 puntos)

Resolver ejercicios y problemas de equilibrios homogéneos en fase gaseosa: presiones parciales (1,5 **puntos**) y constantes de equilibrio K_c y K_p (1,0 **punto**).

2. (2,5 puntos)

- i. Interpretar datos de potenciales estándar de reducción y utilizarlos para predecir el sentido de una reacción de oxidación-reducción. (1,0 punto)
- ii. Describir los elementos que se utilizan para construir una célula electroquímica e interpretar los procesos que ocurren en ella. (1,5 puntos)

3. (1,0 punto)

Determinar experimentalmente calores de reacción en una experiencia encaminada a determinar, de forma cuantitativa, el calor que se absorbe o desprende en una reacción ácido-base en medio acuoso entre NaOH y HCl a presión constante.

4. (2,0 puntos)

- A. Aplicar los principios y reglas que permiten escribir estructuras electrónicas de átomos hasta Z = 54. (1,0 punto)
- B. Utilizar la fortaleza de las fuerzas de Van der Waals y la capacidad de formar enlaces de hidrógeno para justificar la diferencia de puntos de ebullición normales de las sustancias. (1,0 punto)

5. (2,0 puntos)

A. Explicar, cualitativamente, el funcionamiento de una disolución reguladora en el control del pH. (1,0 punto)

B. Formular hidrocarburos insaturados y compuestos orgánicos oxigenados y nitrogenados.

(1,0 punto)