

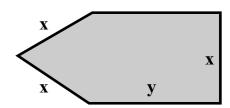
MATEMÁTICAS II

ELIGE CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

Bloque 1 Resuelve las siguientes ecuaciones en la variable x

a)
$$\begin{vmatrix} 0 & 1 & x \\ x & x & 1 \\ -x & 1 & x \end{vmatrix} = 0$$
 (1.25 puntos) b) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x^2 \end{vmatrix} = 0$ (1.25 puntos)

Bloque 2 En un cajero automático se introducen billetes de 10, 20 y 50 euros. El número total de billetes es 130 y el total de dinero es 3000€. Se sabe que el número de billetes de 10€ es α veces los billetes de 50€.


- a) Calcula el número de billetes de cada tipo suponiendo que $\alpha = 2$. (1 punto)
- b) Para $\alpha = 3$ ¿qué ocurre con la situación del cajero planteada? (1 punto)
- c) Siguiendo con $\alpha = 3$, si se tuvieran 100 billetes en el cajero ¿cuánto dinero debería haber para que sea posible una composición del cajero? (0.5 puntos)

Bloque 3 Sea el punto A(1,0,0) y el plano $\pi:2x+y-z=1$. Halla:

- a) La ecuación de la recta que pasa por A y es perpendicular a π . (0.75 puntos)
- b) La ecuación del plano π' que pasa por A y no corta a π . (1 punto)
- c) La distancia entre los dos planos. (0.75 puntos)

Bloque 4

Se dispone de una tela metálica de 100 metros de longitud para vallar una región como la de la figura. ¿Cuáles son los valores de ${\bf x}$ e ${\bf y}$ que hacen que el área encerrada sea máxima? (2.5 puntos)

Bloque 5 Sea la función
$$f(x) = \begin{cases} (x+2)^2 - 4 & x < 0 \\ -a(x-2)^2 + 4a & x \ge 0 \end{cases}$$

- a) Determina los valores de a que hacen continua la función en x = 0. (0.5 puntos)
- b) Determina los valores de a que hacen derivable la función en x = 0. (0.5 puntos)
- c) Con a = 1, calcula el área de la región limitada por la gráfica de la función y el eje de abscisas cuando x varía entre -4 y 4. (1.5 puntos)

Bloque 6 Sea la función $f(x) = \frac{\sin x}{2 - \cos x}$ Calcula:

a) Su dominio de definición. Sus máximos y mínimos en el intervalo $[0, 2\pi]$. (1.25 puntos)

$$\mathbf{b)} \qquad \int_0^{\pi/3} f(x) \, dx \tag{1.25 puntos}$$